
L型 地上高2.25m

前壁配筋図

底版配筋図

条 件

背面土 砂質土 地耐力 100 k N/m2以上 地表面載荷重 10.0kN/m2以下 鉄筋 SD295使用 コンクリートの設計基準強度 21N/mm2以上 鉄筋のかぶり 6cm

水抜孔は内径75mm以上の塩ビ管 その他これに類する耐水材料を用い たもので3m2当り1ヶ所以上設けること。

根切り時に地耐力を確認すること。 その結果によっては地盤改良等により 設計地耐力を確保すること。

宮澤建設株式会社	□ 工事名称 松岡様邸擁壁工事	□ 設計年月日 2008.10.15	
〒245-0066 横浜市戸塚区俣野町1530-1 TEL 045-853-1441 FAX 045-853-3799	□ 図面名称 擁壁構造図 L型2.25m □ 図面 No.3	□縮 尺 1:30	

検図

作図

設計

§ 1. 一般事項(常時)

1-1 工作物の概要

• 築造地 : 松岡様邸擁壁工事

・形 式 : 片持梁式鉄筋コンクリート造擁壁

1-2 使用材料 及 許容応力度

• コンクリート

設計基準強度 : F c= 21 N/mm2

許容圧縮応力度 : σ ca= 7.0 N/mm2

許容せん断応力度 : τ ca= 0.7 N/mm2

許容付着応力度 : f a= 1.4 N/mm2

鉄筋

許容引張応力度 : f t= 196.0 N/mm2

• 鉄筋コンクリート

単位体積重量 : r= 24.0 KN/m3

1-3 設計条件

◎背面土

・土質の種類 : 砂質土

・土の単位体積重量 : $\gamma s = 17.0 \text{ KN/m}3$

• 内部摩擦角 $\phi = 20.0^{\circ}$

・粘 着 力 : C= 0 KN/m2

・壁背面と土との摩擦角: (安定計算時) δ =0.00° (断面計算時) δ =13.00°

◎支持地盤

: 砂質土 ・土質の種類

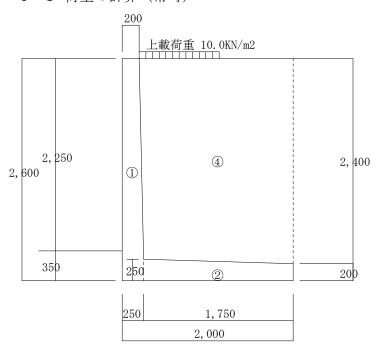
• 内部摩擦角 $\phi = 20.0^{\circ}$

・粘着力 : C= 0 KN/m2

許容地耐力度 : fe= 100 KN/m2

・底盤の摩擦係数 : μ = 0.4

1-4 設計方針


本計算は、片持梁式鉄筋コンクリート擁壁として、すべて土圧にて行う。 土圧の計算は、クーロンの土圧式による。

・ 本計算は、宅地造成等規制法、同施行令、建築基準法、同施行令、及び、 日本建築学会諸基準「鉄筋コンクリート構造計算基準、建築基礎構造設計指針」 に準拠して行う。

なお、応力計算は、日本土木学会「コンクリート標準示方書」による。

§ 1. R C擁壁 (L2.25) の設計

1-1 荷重の計算(常時)

地表面と水平面とのなす角度 β =0.00° 壁背面と鉛直面とのなす角度 θ =0.00° (仮想背面) 粘着力 0 の土圧に対しては、H=Ho=2.600m

1) 自重

区分	面 積 A (m2)			単位重量 γ (KN/m3)	重 量 W(KN/m)	重心距離 X(m)	モーメント Wx(KN・m/m)
① たて壁	2. 350×(0. 200+0. 250)/2 +0. 250×0. 250	=	0. 5913	24. 0	14. 1900	0.114	1. 6210
②かかと版	$1.750 \times (0.250 + 0.200)/2$	=	0.3938	24. 0	9. 4500	1. 093	10. 3250
③つま先版							
④ 背面土	$ \begin{array}{c} 2.350 \times (1.750 + 1.800) / 2 \\ +1.750 \times 0.050 / 2 \end{array} $	=	4. 2150	17. 0	71. 6550	1. 116	79. 9382
⑤ 法面土							
⑥ 前面土							
合 計 Σ				95. 2950		91. 8842	

重心 $x = \sum Wx / \sum W=91.884/95.295=0.964m$

2) 上載荷重

背面上載荷重···W=10.00×1.8000=18.0000KN/m

3) 擁壁に及ぼす土圧

主働土圧係数 KA=0.40

背面土による土圧

 $PA=1/2 \cdot KA \cdot \gamma \cdot H^2=1/2 \times 0.40 \times 17.0 \times 2.600^2=22.9840 KN/m$ $PAX=PA \cdot \cos \delta = PA \cdot \cos 0.00^{\circ} = 22.9840 \times 1.0000 = 22.9840 \text{KN/m}$ PAY=PA·sin δ =PA·sin0. 00° =22. 9840 × 0. 0000=0. 0000KN/m

背面上載荷重による土圧 (宅造法施行令の別表第二を用いるので、上載荷重から5KN/m2を差し引いて算定する。)

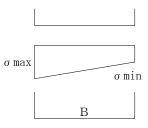
 \triangle PA=KA·q·H=0. 40× (10. 0-5. 0)×2. 600=5. 2000KN/m \triangle PAX= \triangle PA·cos δ = \triangle PA·cos0. 00°=5. 2000×1. 0000=5. 2000KN/m $\triangle PAY = \triangle PA \cdot \sin \delta = \triangle PA \cdot \sin 0.00^{\circ} = 5.2000 \times 0.0000 = 0.0000 KN/m$

作用点の位置

PAX : y=H/3=2.600/3=0.867m \triangle PAX : y=H/2=2.600/2=1.300m

4) 荷重の集計

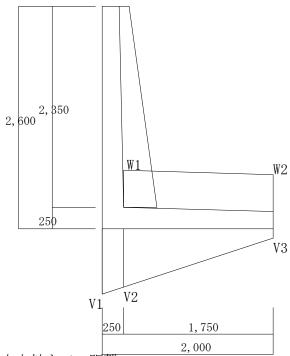
荷重の種類	鉛 直 力 V(KN/m)	水平力 H(KN/m)	作用	点 (m)	モーメント(KN·m/m)	
			X	У	V·x	Н• у
自 重(W)	95. 2950		0.964		91. 8842	
土圧(PA)	0.0000	22. 9840	2.000	0.867	0.0000	19. 9195
土圧(△PA)	0.0000	5. 2000	2.000	1. 300	0.0000	6. 7600
背面上載荷重	18. 0000		1. 100		19.8000	
前面上載荷重						
合計 Σ	113. 2950	28. 1840			111. 6842	26. 6795


1-2 安定性の検討(常時)

1) 転倒に対する検討

抵抗モーメント Mr=∑V·x=111.684KNm/m 転倒モーメント Mo=∑H·y=26.679KNm/m 転 倒 安 全 率 F=Mr/Mo=111.684/26.679=4.186 > 1.5 ∴ 0.K

2) 地盤支持力(接地圧)に対する検討


合力の作用位置 $d=(Mr-Mo)/\Sigma V=(111.684-26.679)/113.295=0.750m$ 偏 心 距 離 e=(B/2)-d=(2.000/2)-0.750=0.250m 最大接地圧 $\sigma\max=(\Sigma V/B)\cdot\{1+(6e/B)\}$ $=(113.295/2.000)\times\{1+(6\times0.250/2.000)\}$ =99.083KN/m2 < 100.0KN/m2 ∴ 0.K

3) 滑り出しに対する検討

水 平 力 の 総 和 Σ H=28.184KN/m 滑動に対する抵抗力 RH= Σ V・ μ =113.295 \times 0.4=45.318KN/m 滑 動 安 全 率 F=RH/ Σ H=45.318/28.184=1.608 > 1.5 \therefore 0.K

1-3 荷重の計算(常時)

中立軸までの距離 Xn=(B/2)・[1+{B/(6e)}]=(2.000/2)×[1+{2.000/(6×0.250)}]=2.335m

V1=99.083KN/m2 V2=88.474KN/m2 V3=14.212KN/m2

 $\begin{array}{l} \mathtt{W1=(2.350\times17.0)+(0.250\times24.0)+10.00=55.950KN/m2} \\ \mathtt{W2=(2.400\times17.0)+(0.200\times24.0)+10.00=55.600KN/m2} \end{array}$

地表面と水平面とのなす角度 β =0.00° 壁背面と鉛直面とのなす角度 θ =1.22°

主働土圧係数 KA=0.40

1) たて壁(中央部)

 $\begin{array}{l} {\rm PAX=1/2\cdot KA\cdot \gamma\cdot H^{^{2}\cdot \cos{(13.\ 00^{\circ}+1.\ 219^{\circ})}=1/2\times 0.\ 40\times 17.\ 0\times 1.\ 175^{^{2}}2\times 0.\ 9694=4.\ 550KN/m}\\ \triangle {\rm PAX=KA\cdot q\cdot H\cdot \cos{(13.\ 00^{\circ}+1.\ 219^{\circ})}=0.\ 40\times (10.\ 0-5.\ 0)\times 1.\ 175\times 0.\ 9694=2.\ 278KN/m}\\ {\rm M=PAX\cdot n+\triangle PAX\cdot n=\{4.\ 550\times (1.\ 175/3)+2.\ 278\times (1.\ 175/2)\}\times 10^{^{\circ}}5=312054Ncm/m}\\ {\rm Q=PAX+\triangle PAX=(4.\ 550+2.\ 278)\times 10^{^{\circ}}3=6828N/m} \end{array}$

D=22.50cm d=15.85cm j=13.869cm at=M/(ft·j)=312054/(19600×13.869)=1.148cm2/m φ=Q/(fa·j)=6828/(140.00×13.869)=3.517cm/m

配筋 D13-1103@ ----> : D13-300@ とする

i=1-(K/3)=1-(0.243/3)=0.919

n=15 b=100cm p=As/(b·d)=422.333/(1000×159)=0.003 k=sqr $\{2n\cdot p+(n\cdot p)^2\}-n\cdot p=sqr\{2\times 15\times 0.003+(15\times 0.003)^2\}-15\times 0.003=0.243$

- ・コンクリートの曲げ圧縮応力度 σc=2M/(k・j・b・d^2)=2×3120537/(0.243×0.919×1000×159^2)=1.113N/mm2 〈σca=7.0N/mm2 ∴ 0.K
- ・鉄筋の引張応力度 σ s=M/(As・j・d)=3120537/(422.333×0.919×159)=50.725N/mm2 ⟨σ sa=196N/mm2 ∴ 0. K
- ・コンクリートのせん断応力度 τ c=S/(b·d)=6828/(1000×159)=0.043N/mm2 〈τ ca=0.7N/mm2 ∴ 0.K

2) たて壁(固定部)

 $\begin{array}{l} {\rm PAX=1/2 \cdot KA \cdot \gamma \cdot H^2 \cdot \cos{(13.00^{\circ}+1.219^{\circ})} =} 1/2 \times 0.40 \times 17.0 \times 2.350^{\circ}2 \times 0.9694 =} 18.201 {\rm KN/m} \\ \triangle {\rm PAX=KA \cdot q \cdot H \cdot \cos{(13.00^{\circ}+1.219^{\circ})} =} 0.40 \times (10.0-5.0) \times 2.350 \times 0.9694 =} 4.556 {\rm KN/m} \\ {\rm M=PAX \cdot n + \triangle PAX \cdot n =} \{18.201 \times (2.350/3) + 4.556 \times (2.350/2)\} \times 10^{\circ}5 =} 1961098 {\rm Ncm/m} \\ {\rm Q=PAX + \triangle PAX=(18.201 + 4.556) \times 10^{\circ}3} = 22757 {\rm N/m} \end{array}$

D=25.00cm d=18.35cm j=16.056cm at=M/(ft·j)=1961098/(19600×16.056)=6.232cm2/m ϕ =Q/(fa·j)=22757/(140.00×16.056)=10.124cm/m

配筋 D13-203@ ----> : D13-150@ とする

n=15 b=100cm p=As/(b·d)=844.667/(1000×184)=0.005 k=sqr $\{2n\cdot p+(n\cdot p)^2\}-n\cdot p=sqr\{2\times 15\times 0.005+(15\times 0.005)^2\}-15\times 0.005=0.303$ j=1-(K/3)=1-(0.303/3)=0.899

- ・コンクリートの曲げ圧縮応力度 σ c=2M/(k・j・b・d^2)=2×19610980/(0.303×0.899×1000×184^2)=4.276N/mm2 〈σ ca=7.0N/mm2 ∴ 0. K
- ・鉄筋の引張応力度 σ s=M/(As・j・d)=19610980/(844.667×0.899×184)=140.740N/mm2 <σ sa=196N/mm2 ∴ 0. K
- ・コンクリートのせん断応力度 τ c=S/(b·d)=22757/(1000×184)=0.124N/mm2 <τ ca=0.7N/mm2 ∴ 0.K

3) かかと版(固定部)

 $\begin{array}{l} \text{M1=(W1+2\cdot W2)\cdot B^2/6=(55.950+2\times55.600)\times 1.750^2/6=85.316KNm/m} \\ \text{Q1=(W1+W2)\cdot B/2=(55.950+55.600)\times 1.750/2=97.606KN/m} \\ \text{M2=(V2+2\cdot V3)\cdot B^2/6=(88.474+2\times14.212)\times 1.750^2/6=59.667KNm/m} \\ \text{Q2=(V2+V3)\cdot B/2=(88.474+14.212)\times 1.750/2=89.850KN/m} \\ \text{M=|M1-M2|=|85.316-59.667|\times 10^5=2564929Ncm/m} \\ \text{Q=|Q1-Q2|=|97.606-89.850|\times 10^3=7756N/m} \\ \end{array}$ $\begin{array}{l} \text{D=25.00cm} \quad \text{d=18.35cm} \quad \text{j=16.056cm} \\ \text{at=M/(ft\cdot j)=2564929/(19600\times16.056)=8.150cm2/m} \\ \text{\phi=Q/(fa\cdot j)=7756/(140.00\times16.056)=3.450cm/m} \end{array}$

配筋 D13-155@ ----> : D13-150@ とする

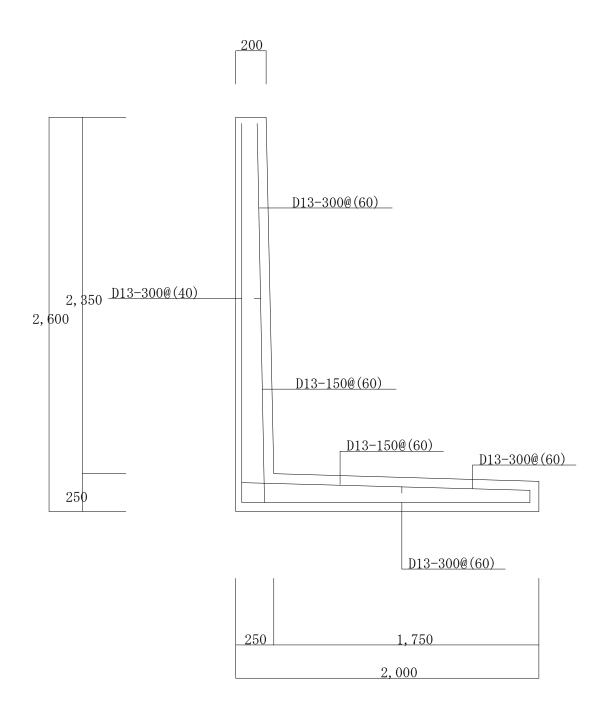
n=15 b=100cm p=As/(b·d)=844.667/(1000×184)=0.005 k=sqr $\{2n\cdot p+(n\cdot p)^2\}-n\cdot p=sqr\{2\times 15\times 0.005+(15\times 0.005)^2\}-15\times 0.005$

 $k = sqr \{2n \cdot p + (n \cdot p)^2\} - n \cdot p = sqr \{2 \times 15 \times 0.005 + (15 \times 0.005)^2\} - 15 \times 0.005 = 0.303$ j = 1 - (K/3) = 1 - (0.303/3) = 0.899

- ・コンクリートの曲げ圧縮応力度 σ c=2M/(k・j・b・d^2)=2×25649280/(0.303×0.899×1000×184^2)=5.593N/mm2 〈σ ca=7.0N/mm2 ∴ 0. K
- ・鉄筋の引張応力度 σ s=M/(As・j・d)=25649280/(844.667×0.899×184)=184.074N/mm2 ⟨σ sa=196N/mm2 ∴ 0. K
- ・コンクリートのせん断応力度 τc=S/(b·d)=7756/(1000×184)=0.042N/mm2 〈τca=0.7N/mm2 ∴ 0.K

4) かかと版(中央部)

D=22.50cm d=15.85cm j=13.869cm at=M/(ft·j)=1112805/(19600×13.869)=4.094cm2/m ϕ =Q/(fa·j)=20046/(140.00×13.869)=10.324cm/m


配筋 D13-309@ ----> : D13-300@ とする

n=15 b=100cm p=As/(b·d)=422.333/(1000×159)=0.003 k=sqr $\{2n\cdot p+(n\cdot p)^2\}-n\cdot p=sqr\{2\times 15\times 0.003+(15\times 0.003)^2\}-15\times 0.003=0.243$ j=1-(K/3)=1-(0.243/3)=0.919

- ・コンクリートの曲げ圧縮応力度 σ c=2M/(k・j・b・d^2)=2×11128050/(0.243×0.919×1000×159^2)=3.968N/mm2 〈σ ca=7.0N/mm2 ∴ 0.K
- ・鉄筋の引張応力度 σ s=M/(As・j・d)=11128050/(422.333×0.919×159)=180.889N/mm2 〈σ sa=196N/mm2 ∴ 0. K
- ・コンクリートのせん断応力度 τ c=S/(b·d)=20046/(1000×159)=0.126N/mm2 <τ ca=0.7N/mm2 ∴ 0.K

1-4 略配筋図

()内は、鉄筋のかぶり厚さ(コンクリート表面から鉄筋表面までの最小間隔)を示す。

